RENESAS

M62353P/FP/GP

8-bit 8ch D/A Converter with Buffer Amplifiers

REJ03D0870-0300 Rev.3.00 Mar 25, 2008

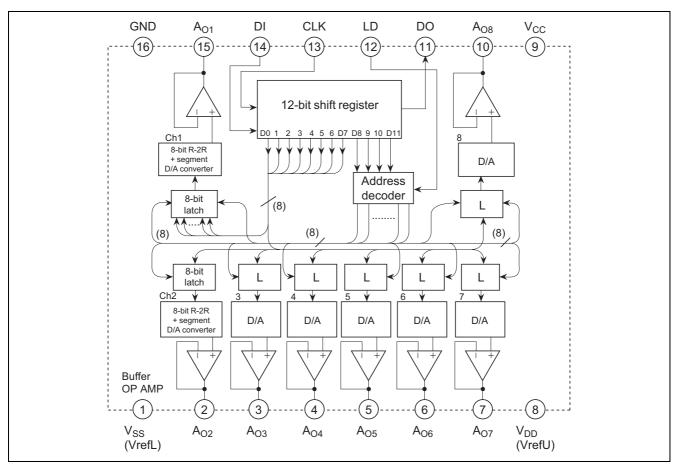
Description

The M62353 is an integrated circuit semiconductor of CMOS structure with 8 channels of built-in D/A converters with output buffer operational amplifiers.

The 3-wire serial interface method is used for the transfer format of digital data to allow connection with microcomputer with minimum wiring.

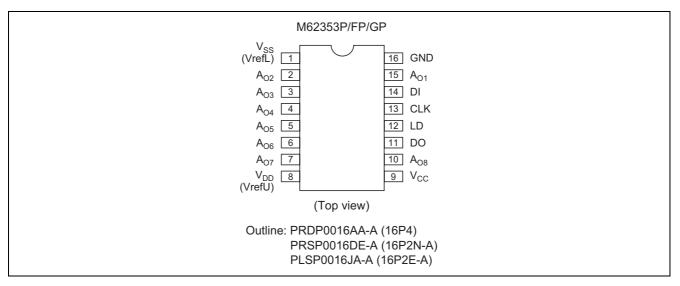
It is able to cascading serial use with DO terminal.

The output buffer operational amplifier operates in the whole voltage range from power supply to ground for both input/output.


Features

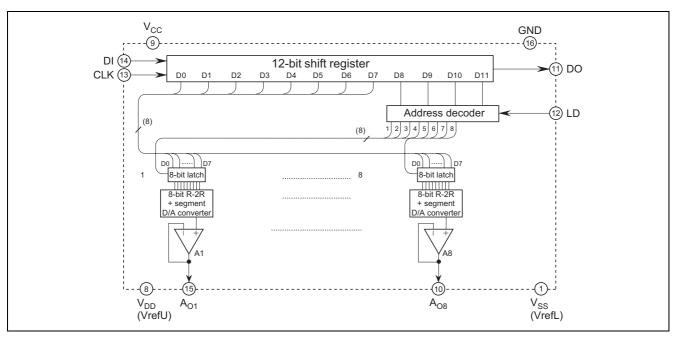
- 12-bit serial data input (3-wire serial data transfer method)
- Highly stable output buffer operational amplifier allow operation in the all voltage range from power supply to ground.

Application


Adjustment/control of industrial or home-use electronic equipment, such as VTR camera, VTR set, TV, and CRT display.

Block Diagram

RENESAS


Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
14	DI	Serial data input terminal
11	DO	Serial data output terminal
13	CLK	Serial clock input terminal
12	LD	LD terminal input high level then latch circuit data load
15	A _{O1}	8-bit D/A converter output terminal
2	A _{O2}	
3	A _{O3}	
4	A _{O4}	
5	A _{O5}	
6	A _{O6}	
7	A ₀₇	
10	A _{O8}	
9	V _{CC}	Power supply terminal
16	GND	Digital and analog common GND
8	V _{DD}	D/A converter upper reference voltage input terminal
1	V _{SS}	D/A converter lower reference voltage input terminal

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	-0.3 to +7.0	V
D/A converter upper reference voltage	V _{DD}	-0.3 to +7.0	V
Input voltage	V _{IN}	–0.3 to V _{CC} + 0.3	V
Output voltage	Vo	–0.3 to V _{CC} + 0.3	V
Power dissipation	Pd	450 (P) / 300 (FP) / 150 (GP)	mV
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

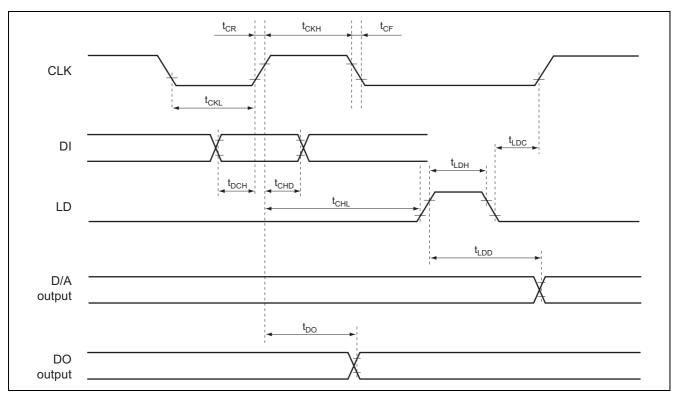
Digital Part

```
(V<sub>CC</sub>, VrefU = +5 V \pm 10%, V<sub>CC</sub> \geq VrefU, GND, VrefL = 0 V, Ta = -20°C to +85°C, unless otherwise noted.)
```

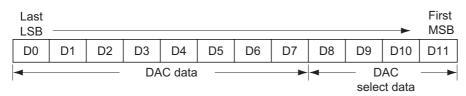
		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply voltage	Vcc	4.5	5.0	5.5	V	
Circuit current	Icc	_	1.0	2.5	mA	CLK = 1 MHz operation
						$I_{OA} = 0 \ \mu A$
Input leak current	I _{ILK}	-10	_	10	μΑ	$V_{IN} = 0$ to V_{CC}
Input low voltage	VIL	_	—	0.2 V _{CC}	V	
Input high voltage	V _{IH}	0.8 V _{CC}	—	—	V	
Output low voltage	V _{OL}	—	—	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	$V_{CC}-0.4$	_	_	V	I _{OH} = -400 μA

Analog Part

(V_{CC}, VrefU = + 5 V \pm 10%, V_{CC} \geq VrefU, Ta = -20°C to +85°C, unless otherwise noted.)


			Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Conditions	
Current dissipation	I _{DD}		0.9	1.7	mA	VrefU = 5 V, VrefL = 0 V	
						Data condition; at maximum current	
D/A converter upper reference voltage range	V _{DD}	3.5	—	Vcc	V	The output dose not necessarily be the value within the reference voltage	
D/A converter lower reference voltage range	V _{SS}	GND	—	V _{CC} – 3.5	V	setting range. The output value is determined by the buffer amplifier output voltage range (V _{AO})	
Buffer amplifier output	V _{AO}	0.1	—	V _{CC} – 0.1	V	$I_{OA} = \pm 100 \ \mu A$	
voltage range		0.2	—	V _{CC} - 0.2		I _{OA} = ±500 μA	
Buffer amplifier output	I _{AO}	-1	—	1	mA	Upper side saturation voltage = 0.3 V	
drive range						Lower side saturation voltage = 0.2 V	
Differential nonlinearity	S _{DL}	-1.0	—	1.0	LSB	VrefU = 4.79 V	
error						VrefL = 0.95 V	
Nonlinearity error	SL	-1.5		1.5	LSB	$V_{CC} = 5.5 V (15 \text{ mV/LSB})$	
Zero code error	SZERO	-2	—	2	LSB	Without load ($I_{AO} = \pm 0 \ \mu A$)	
Full scale error	S _{FULL}	-2	_	2	LSB]	
Output capacitive load	Co		_	0.1	μF		
Buffer amplifier output impedance	R _o		5	_	Ω		

AC Characteristics

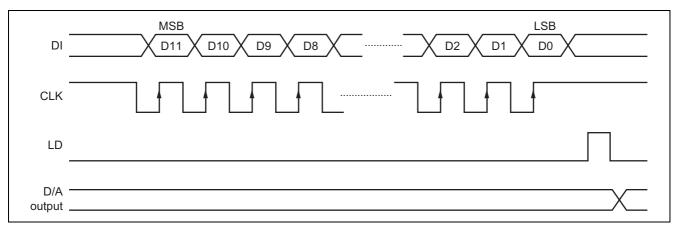

 $(V_{CC}, VrefU = +5 V \pm 10\%, V_{CC} \ge VrefU, GND, VrefL = 0 V, Ta = -20 to +85^{\circ}C, unless otherwise noted.)$

		Limits				
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
Clock "L" pulse width	t _{CKL}	200	—	—	ns	
Clock "H" pulse width	t _{скн}	200	—	—	ns	
Clock rise time	t _{CR}	_	—	200	ns	
Clock fall time	t _{CF}	_	—	200	ns	
Data setup time	t _{DCH}	30	—	—	ns	
Data hold time	t _{CHD}	60	—	—	ns	
LD setup time	t _{CHL}	200	—	—	ns	
LD hold time	t _{LDC}	100	—	—	ns	
LD "H" pulse width	t _{LDH}	100	—	—	ns	
Data output delay time	t _{DO}	70	—	350	ns	$C_L \le 100 \text{ pF}$
D/A output setting time	t _{LDD}	_	—	300	μS	$C_{\text{L}} \leq 100 \text{ pF V}_{\text{AO}}: 0.5 \leftrightarrow 4.5 \text{ V}$
						The time until the output becomes
						the final value of 1/2 LSB

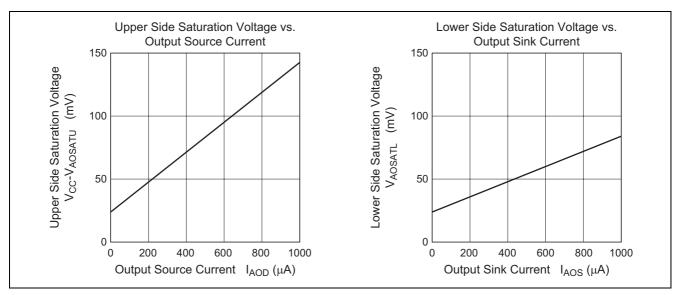
Timing Chart

Digital Data Format

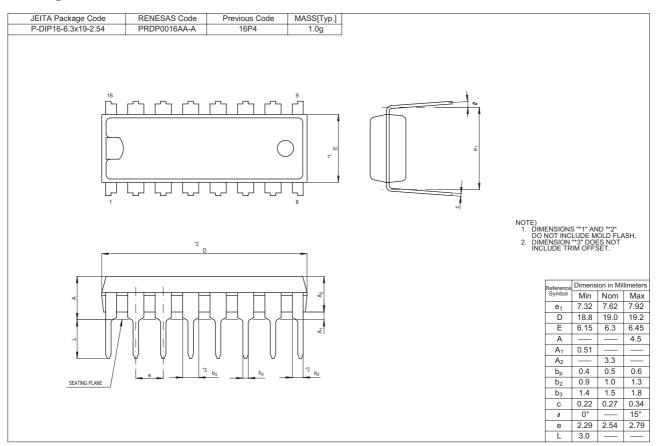
DAC Data

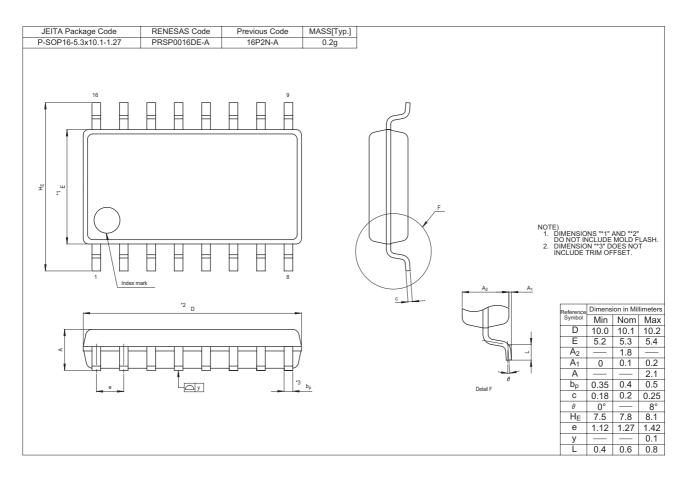

D0	D1	D2	D3	D4	D5	D6	D7	D/A Output
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL
1	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 2 + VrefL
0	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 3 + VrefL
1	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 4 + VrefL
:	:	:	:	•••	:	:		:
0	1	1	1	1	1	1	1	(VrefU – VrefL) / 256 × 255 + VrefL
1	1	1	1	1	1	1	1	VrefU

Note: $VrefU = V_{DD}$, $VrefL = V_{SS}$

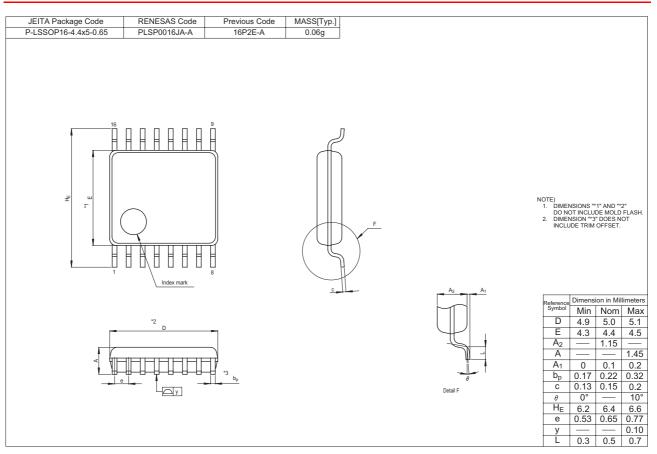

DAC Select Data

D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	A _{O1} select
0	0	1	0	A _{O2} select
0	0	1	1	A _{O3} select
0	1	0	0	A _{O4} select
0	1	0	1	A _{O5} select
0	1	1	0	A _{O6} select
0	1	1	1	A ₀₇ select
1	0	0	0	A _{O8} select
1	0	0	1	Don't care
1	0	1	0	Don't care
1	0	1	1	Don't care
1	1	0	0	Don't care
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care


Timing Chart (Model)



Typical Characteristics


Package Dimensions

RENESAS

M62353P/FP/GP

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a fast study of the focus service of the such as the development of the such as product data, diagrams, charts, programs, algorithms, and application is additional and different information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a study or the information in this document. Dut Renesas as products are not designed phylicability of the such assigned and the product service technology describes are not designed phylicability of the such assigned and the product service technology describes are not designed phylicability of the such assigned and reliability of the suce set of the such

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com